metal-organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Nilay Hazari, Andrew R. Cowley and Philip Mountford*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: philip.mountford@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.003 Å Disorder in main residue R factor = 0.030 wR factor = 0.036 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Di- μ -chloro-bis[(*N*-tert-butylimido)chlorobis-(pyridine- κN)titanium(IV)] perdeuterobenzene disolvate

The title compound, $[Ti_2(C_4H_9N)_2Cl_2(C_5H_5N)_4] \cdot 2C_6D_6$, possesses a dinuclear structure featuring two six-coordinate pseudo-octahedral titanium(IV) centres with bridging Cl atoms. The complex is located on a crystallographic inversion centre.

Comment

Over the last 15 years, the chemistry of titanium-imido complexes has received considerable attention (Wigley, 1994). It has been shown that these complexes can be utilized in a wide variety of stoichiometric and sometimes catalytic coupling reactions with unsaturated substrates (Gade & Mountford, 2001, and references therein). A general entry point to new titanium-imido chemistry is gained *via* the readily prepared synthons [Ti(NR)Cl₂(py)₃] ($R = {}^{t}Bu$ or aryl) (Mountford, 1997). During the course of our studies, we reported that prolonged exposure of [Ti(N'Bu)Cl₂(py)₃] to vacuum results in the loss of the *trans* pyridine ligand (Blake *et al.*, 1997). We report here the solid-state structure of [Ti₂(μ -Cl)₂(N'Bu)₂Cl₂(py)₄] crystallized as its perdeuterobenzene disolvate, (I).

Molecules of (I) adopt a dinuclear structure in the solid state, possessing crystallographically imposed C_i molecular symmetry. The solid-state structure is entirely consistent with the previously reported solution ¹H and ¹³C NMR data (Blake et al., 1997). The two pseudo-octahedral six-coordinate titanium(IV) centres are bridged by two Cl atoms. The bridging Cl-Ti bond lengths [Ti1-Cl2 = 2.4600 (4) Å and Ti1-Cl2A= 2.7438 (4) Å] are longer than the terminal Ti-Cl bond length [Ti1-Cl1 = 2.3898 (4) Å]. The bridging Cl-Ti bond distance of the Cl atom trans to the imido group is considerably longer than the bridging Ti-Cl bond distance of the Cl atom cis to the imido group [difference between Ti1-Cl2 and $Ti1 - Cl2^{i} = 0.2838$ (6) Å; symmetry code as in Table 1]. This is a reflection of the strong trans influence exercised by the imido group. The near linearity of the Ti=N^tBu linkage [Ti1=N1- $C1 = 170.9 (2)^{\circ}$ is consistent with the imido ligand acting as a four-electron donor to the titanium centre (Wigley, 1994).

The structure of (I) is closely related to that of the corresponding titanium-imido species $[Ti_2(\mu-Cl)_2(N-2-PhC_6H_4)_2-Cl_2(py)_4]$ and $[Ti_2(\mu-Cl)_2(N-2-tBuC_6H_4)_2Cl_2(py)_4]$, synthe-

Online 20 November 2004

Received 2 November 2004

Accepted 8 November 2004

Figure 1

View of the molecular structure of (I). The displacement parameters are drawn at the 20% probability level and H atoms have been omitted for clarity. The solvent of crystallization has been omitted and the minor orientation of the disordered tert-butyl group is not shown. Atoms carrying the suffix A are related to their counterparts by the symmetry code (1 - x, 1 - y, 1 - z).

sized by Nielson and co-workers (Nielson et al., 2001), and the bond lengths and angles around $Ti_2(\mu$ -Cl)₂ are similar in all three compounds.

Experimental

The title compound was prepared according to the previously described procedure (Blake et al., 1997) and authenticated by comparison of its solution ¹H NMR spectrum with that previously reported. Crystallization from C₆D₆ afforded crystals of (I) as airsensitive yellow blocks.

Crystal data

$[Ti_2(C_4H_9N)_2Cl_2(C_5H_5N)_4]\cdot 2C_6D_6$	Z = 1
$M_r = 864.58$	$D_x = 1.321 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.0662 (2) Å	Cell parameters from 1850
b = 11.0937 (2) Å	reflections
c = 12.7589 (3) Å	$\theta = 5-28^{\circ}$
$\alpha = 101.6259 \ (9)^{\circ}$	$\mu = 0.65 \text{ mm}^{-1}$
$\beta = 90.1675 \ (10)^{\circ}$	$T = 150 { m K}$
$\gamma = 103.4005 (11)^{\circ}$	Prism, pale orange
V = 1086.37 (4) Å ³	$0.30 \times 0.12 \times 0.08 \text{ mm}$
Data collection	

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min}=0.82,\ T_{\rm max}=0.95$ 18502 measured reflections

Refinement

Refinement on F R = 0.030wR = 0.037S = 1.033925 reflections 252 parameters

02

4933 independent reflections 3925 reflections with I > 0 $R_{\rm int} = 0.028$ $\theta_{\rm max} = 27.4^\circ$ $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$

H-atom parameters constrained Weighting scheme: see text $(\Delta/\sigma)_{\rm max} = 0.019$ $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}$ $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1				
Selected	geometric	parameters	(Å,	°).

Ti1-Cl1	2.3898 (4)	C5-C6	1.384 (2)
Ti1-Cl2	2.7438 (4)	C6-C7	1.380 (3)
Ti1-Cl2 ⁱ	2.4600 (4)	C7-C8	1.381 (3)
Ti1-N1	1.6921 (12)	C8-C9	1.386 (2)
Ti1-N2	2.2355 (12)	N3-C10	1.345 (2)
Ti1-N3	2.2316 (12)	N3-C14	1.3416 (19)
N1-C1	1.442 (4)	C10-C11	1.384 (2)
N1-C51	1.435 (19)	C11-C12	1.383 (3)
C1-C2	1.533 (5)	C12-C13	1.374 (3)
C1-C3	1.523 (4)	C13-C14	1.387 (2)
C1-C4	1.531 (5)	C15-C16	1.379 (3)
C51-C52	1.532 (15)	C15-C20	1.386 (3)
C51-C53	1.544 (14)	C16-C17	1.384 (3)
C51-C54	1.549 (14)	C17-C18	1.387 (3)
N2-C5	1.3387 (19)	C18-C19	1.384 (3)
N2-C9	1.343 (2)	C19-C20	1.381 (3)
Cl1-Ti1-Cl2	84.062 (14)	N1-C51-C54	109.4 (10)
Cl1-Ti1-Cl2 ¹	161.860 (17)	C52-C51-C53	110.3 (10)
Cl2-Ti1-Cl2 ⁱ	77.891 (13)	C52-C51-C54	109.9 (10)
Cl1-Ti1-N1	99.89 (4)	C53-C51-C54	110.1 (10)
Cl2-Ti1-N1	176.05 (4)	Ti1-N2-C5	118.15 (10)
Cl2 ⁱ -Ti1-N1	98.15 (4)	Ti1-N2-C9	124.02 (11)
Cl1-Ti1-N2	88.47 (3)	C5-N2-C9	117.82 (13)
Cl2-Ti1-N2	84.25 (3)	N2 - C5 - C6	123.11 (14)
Cl2 ⁱ -Ti1-N2	87.92 (3)	C5-C6-C7	118.72 (15)
N1-Ti1-N2	95.69 (5)	C6-C7-C8	118.77 (15)
Cl1-Ti1-N3	90.60 (3)	C7-C8-C9	119.22 (16)
Cl2-Ti1-N3	84.89 (3)	N2-C9-C8	122.36 (16)
Cl2 ⁱ -Ti1-N3	89.63 (3)	Ti1-N3-C10	120.12 (10)
N1-Ti1-N3	95.13 (5)	Ti1-N3-C14	122.11 (10)
N2-Ti1-N3	169.14 (4)	C10-N3-C14	117.52 (13)
Ti1-Cl2-Ti1 ⁱ	102.109 (13)	N3-C10-C11	122.96 (15)
Ti1-N1-C1	170.9 (2)	C10-C11-C12	118.93 (16)
Ti1-N1-C51	177.3 (6)	C11-C12-C13	118.57 (15)
N1 - C1 - C2	107.1 (3)	C12-C13-C14	119.46 (15)
N1-C1-C3	110.4 (3)	N3-C14-C13	122.53 (15)
C2 - C1 - C3	109.5 (3)	C16-C15-C20	119.88 (17)
N1-C1-C4	110.5 (3)	C15-C16-C17	120.09 (17)
C2 - C1 - C4	109.7 (3)	C16-C17-C18	120.11 (17)
C3-C1-C4	109.6 (3)	C17-C18-C19	119.68 (18)
N1-C51-C52	107.5 (10)	C18-C19-C20	120.12 (17)
N1-C51-C53	109.7 (10)	C15-C20-C19	120.12 (16)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

All H atoms were positioned geometrically after each cycle of refinement. A three-term Chebychev polynomial weighting scheme was applied: $w = \{1 - [\Delta F/2\sigma(F)]^2\}^2 / [1.08T_0(x) + 0.471T_1(x) +$ $0.742T_2(x)$], where $x = F_{calc}/F_{max}$ (Prince, 1983; Watkin, 1994).

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO; data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank the Rhodes Trust and the EPSRC for support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

- Blake, A. J., Collier, P. E., Dunn, S. C., Li, W., Mountford, P. & Shishkin, O. V. (1997). J. Chem. Soc. Dalton Trans. pp. 1549–1558.
- Gade, L. H. & Mountford, P. (2001). Coord. Chem. Rev. 216-217, 65-97.
- Mountford, P. (1997). Chem. Commun. pp. 2127-2134.
- Nielson, A. J., Glenny, M. W. & Rickard, C. E. F. (2001). J. Chem. Soc. Dalton Trans. pp. 232–239.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1983). Acta Cryst. A39, 407-410.
- Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.
- Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239-482.